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Blockchain Programming Abstractions



Historical perspective
From the early 80s the vision of digital money has been around –
but it took more than a quarter of century before a fully
decentralized solution became a reality.
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Bitcoin [Nakamoto 2008]
Combination of all the above-mentioned techniques for full
decentralization in an open system of untrusted peers.

Proof-of-Work used to
Limit the number of votes per entity – against Sybil Attack
Limit multiple spending – coupled with longest chain rule
Minting and Incentives for miners: miners as rational profit
seekers, it must be profitable to follow the protocol
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Blockchain in a nutshell

b0 b1 b2 b3 b4

A Data Structure
A sequence of blocks, each containing transactions and the solution of
the PoW, replicated at each process pi

A block bh at level h is linked to the block bh−1 at level h − 1 by
containing the hash of bh−1

Immutability and Non-Repudiability

The (Bitcoin) Protocol to update the data structure at pi
Make a block bh solving PoW
Broadcast bh

Upon reception of bh: verify bh and locally append bh if bh is valid

bh contains the reward for the miner that made it
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Consistency Issues: forks

at pi

b0,x b1,y

b2,z b3,x

at pj

b0,x b1,y

b2,x

b2,z 6= b2,x
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Consistency Issues: reconciliation

at pi

b0,x b1,y

b2,z b3,x

b2,x

at pj

b0,x b1,y

b2,z b3,x

b2,x
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Which consistency is really needed?

Bitcoin guys motto: “just wait enough” :
– make a transaction spendable only when it belongs to a block old enough –

Intuitively, this means to assume a known bound on the duration ∆ of the time
interval between any pair of blockchain heights.

...But in reality ∆ is unknown so that two different processes can read an
inconsistent state

...This is particularly true from the point of view of smart contracts who
manipulate any type of (replicated) variable

(In the reminder of the presentation keep always in mind that the number of replicas is unknown)
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(Ethereum) smart contracts

Smart contracts are programs who “live” in blockchain. The
program is compiled and its bytecode is wrapped in a transaction,
added to a block.

Client applications – wallets – can call the smart contract through
function invocations.

Function invocations are treated as transactions by the Ethereum
Virtual Machine (EVM)
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A smart contract example

The first client that sends a valid solution gets a reward.

Invariant (Safety): no two winners.
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EVM semantics [Luu et al 2016]

Only one “elected leader” executes successfully the Propose rule at a given
height of the blockchain BC . Other processes use the Accept rule to “repeat”

the transitions σi−1 →Ti σi after the leader broadcasts block B.
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but when a fork occurs...

b0,x b1,y b2,z

b3,w

b3,x

b4,z

(Tk ,Th)

b0,x b1,y b2,z

b3,w

b3,x

b4,x

(Th,Tk)

Th : msg .sender = ph
Tk : msg .sender = pk

the EVM could manage
to wait long enough
before letting the application
read at the two processes ?

If ∆ is unknown
either we break liveness
– we wait forever –
or we break safety
– two winners –
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Blockchains, how many?

2008, S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System

2015, Ethereum , Hyperledger

2016, PeerCensus, ByzCoin,Tendermint

2017, RedBelly, Algorand

... and many others

Which consistency?
Few attempts to
formalize Blockchain
as a list of records

2018. A. Fernández Anta et al., Formalizing and implementing distributed ledger objects.

2017. A. Girault et al., Why You Can’t Beat Blockchains: Consistency and
High Availability in Distributed Systems.
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Blockchains, how many?
2008, S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System

2015, Ethereum , Hyperledger

2016, PeerCensus, ByzCoin

2017, RedBelly, Algorand

... and many others

Our contribution
a formal unified framework providing blockchain consistency criteria
to map current blockchains and state implementability results.
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Formalization key points

1. Blockchain formalized as an Abstract Data Type to formally
define the semantics of sequential and concurrent
specifications;

2. The data type is a tree of blocks: the BlockTree Abstract
Data Type;

3. The block generation process is encapsulated as separate data
type: the Θ Token Oracle Abstract Data Type.
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The Abstract Data Type
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Abstract Data Types
An abstract data type refers to a 6-tuple T = 〈A,B,Z , ξ0, τ, δ〉 where:

A and B are countable sets called input alphabet and output alphabet;
Z is a countable set of abstract states and ξ0 is the initial abstract state;
τ : Z × A→ Z is the transition function;
δ : Z × A→ B is the output function.

An abstract data type, by its transition system, defines the sequential
specification of an object. If we consider a path that traverses its system of
transitions, then the word formed by the subsequent labels on the path is a
sequential history.
Concurrent histories are defined considering a partial order relations among
events executed by different processes H = 〈Σ,E ,Λ, 7→,≺,↗〉, where
o ∈ Σ = A ∪ (A× B) are operations.
A consistency criterion is a function C : T → P(H) where T is the set of
abstract data types, H is a set of histories and P(H) is the sets of parts of H.
An algorithm AT implementing the ADT T ∈ T is C-consistent with respect to
criterion C if all the operations terminate and all the admissible executions are
C-consistent, i.e. they belong to the set of histories C(T ).
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The Block Tree
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BlockTree Abstract Data Type

The BlockTree Abstract Data Type exposes two operations:
read(): selects a blockchain in the blocktree;

append(b): appends the block b to the blocktree if such block
is valid, i.e., it satisfies a predicate P.
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Sequential specification

B: countable and non empty set of blocks;

B′ ⊆ B a countable and non empty set of valid blocks, i.e., ∀b ∈ B′, P(b) = >.

By assumption b0 ∈ B′;

BT a a countable non empty set of blocktrees. A directed rooted tree

bt = (Vbt ,Ebt ) where each vertex of the BlockTree is a block and any edge

points backward to the root, called genesis block;

BC a countable non empty set of blockchains, where a blockchain is a path from

a leaf of bt to b0.

F is a countable non empty set of selection functions, f ∈ F : BT → BC.

Def. BT-ADT=〈A = {append(b), read(): b ∈ B},B = BC ∪ {true, false},

Z = BT × F × (B → {true, false}), ξ0 = (b0, f ), τ, δ〉
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Sequential specification (cont.)

the transition function τ : Z × A→ Z is defined by

τ((bt, f ,P), read()) = (bt, f ,P);

τ((bt, f ,P), append(b)) =
{

({b0}_f (bt)_{b}, f ,P) if b ∈ B′

(bt, f ,P) otherwise

and the output function δ : Z × A→ B is defined by

δ((bt, f ,P), append(b)) =
{

true if b ∈ B′

false otherwise

δ((bt, f ,P), read()) =
{
{b0} if bt = b0
{b0}_f (bt) otherwise
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Sequential histories

ξ0

ξ0 = { b0 , f ,P}

ξ1

ξ1 = { b0 b1 , f ,P}

append(b1)/true

if b1 ∈ B′

append(b3)/false

if b3 /∈ B′
ξ2

ξ2 = { b0 b1 b2 , f ,P}

append(b2)/true

if b2 ∈ B′

append(b3)/false

if b3 /∈ B′

read()/b_0 b1 read()/b_0 b_1 b2
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Consistency criteria

Two consistency criteria:
eventual consistency;
strong consistency.

Each criteria is a conjunction of properties.
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Validity Property

b0

1

2 4 b0 2 4

1 3

b0 2 4

1 3 5

i
t

b0

1

b0

1 3

2 b0

1 3 5

2 4

j
t

Validity property: all the blocks read are valid and have been

appended by some process.
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Local Monotonic Read Property
b0

1

2 4 b0 2 4

1 3

b0 2 4

1 3 5

i
t

b0

1

b0

1 3

2 b0

1 3 5

2 4

j
t

Local monotonic read property: the score of the sequence of

blockchains read at the same process never decreases.

score: it can be the length, the weight, etc...
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Ever Growing Tree Property

b0

1

2 4 b0 2 4

1 3

b0 2 4

1 3 5

i
t

b0
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b0

1 3

2 b0

1 3 5

2 4

j
t

Ever growing tree property: the score of returned blockchains

eventually grows.
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Strong Prefix Property

b0 1 2 b0 1 2 3 b0 1 2 3 4

i
t

b0 1 b0 1 2 b0 1 2 3 4

j
t

Strong prefix property: for each pair of read() operations, one

returns a blockchain that is the prefix of the other or vice versa.
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Eventual Prefix Property
b0

1

2 4 b0 2 4

1 3

b0 2 4

1 3 5

i
t

b0

1

b0

1 3

2 b0

1 3 5

2 4

j
t

Eventual prefix property: For each read blockchain with a score

s, eventually all the subsequent read blockchains share a maximum

common prefix with a score of at least s.
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Consistency Criteria

Eventual Consistency Criterion (EC):
Local Monotonic Read;
Validity;
Ever Growing Tree;
Eventual Prefix.

Strong Consistency Criterion (SC) :
Local Monotonic Read;
Validity;
Ever Growing Tree;
Strong Prefix.
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Token Oracle
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Token Oracle

The Token Oracle Θk Abstract Data Type exposes two operations:

getToken(bq, b`): returns or not the right to extend the block

bk with block b`.
b0 b1 b2 bq b`

consumeToken(bbq
` ): allows a valid block to be appended or

not, depending on how many blocks already extend bq.
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Sequential histories

ξ0

ξ0 = {

{btkn0
1 } {} {} . . .K

tkn ⊥ ⊥ . . .

tapeα2 ⊥ ⊥ tkn . . .

tapeα1

... , k}

ξ1

ξ1 = {

{btkn0
1 } {} {} . . .K

⊥ ⊥ ⊥ . . .

tapeα2 ⊥ ⊥ tkn . . .

tapeα1

... , k}

getToken(b1, bk )/btkn1
k

if pop(tapeα1 ) = tkn

ξ2

ξ2 = {

{btkn0
1 } {btkn1

k } {} . . .K

⊥ ⊥ ⊥ . . .

tapeα2 ⊥ ⊥ tkn . . .

tapeα1

... , k}

consumeToken(btkn1
k )/{btkn1

k }
if |K [1]| < k ∧ tkn1 ∈ T

getToken() if called a finite (but unknown) number of times
returns a valid token.

consumeToken() returns the token that has been appended.
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Frugal and Prodigal Token Oracles

A Frugal Oracle ΘF ,k allows to append at most k blocks to the
same block.

A Prodigal Oracle ΘP allows to append an unlimited number of
blocks to any block.

b0 b1 b2 bq

bp

b`
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Frugal and Prodigal Token Oracles

A Frugal Oracle ΘF ,k allows to append at most k blocks to the
same block.

A Prodigal Oracle ΘP allows to append an unlimited number of
blocks to any block.

b0 b1 b2 bq

bp

b`
if ΘF ,k>1 or ΘP
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Frugal and Prodigal Token Oracles

A Frugal Oracle ΘF ,k allows to append at most k blocks to the
same block.

A Prodigal Oracle ΘP allows to append an unlimited number of
blocks to any block.

b0 b1 b2 bq

bp

if ΘF ,k=1
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Blocktree and Oracle ADT hierarchy
R(BT-ADTSC ,ΘF ,k=1)

R(BT-ADTEC ,ΘF ,k>1)

R(BT-ADTSC ,ΘP)
R(BT-ADTSC ,ΘF ,k>1)

R(BT-ADTEC ,ΘP)

We refine the BlockTree ADT append() with the Oracle ADT,
the refinement is denoted as R(BT-ADT,Θ)
We organize the refinements in a hierarchy. In this way, we
can state impossibility results on the weakest combination and
propagate them above.
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Implementability results
R(BT-ADTSC ,ΘF ,k=1)

R(BT-ADTEC ,ΘF ,k>1)

R(BT-ADTSC ,ΘP)
R(BT-ADTSC ,ΘF ,k>1)

R(BT-ADTEC ,ΘP)

(1) ΘF ,k=1 has Consensus number ∞
(2) ΘP has Consensus number 1
(3) Reliable Communication is necessary in eventual consistent blockchains
(4) Impossible to implement Strong Consistency if forks can occur. Direct

implication: non-implementability of refinements R(BT-ADTSC ,ΘP ) and
R(BT-ADTSC ,ΘF ,k>1).

(5) From (1),(3) and (4): Consensus and Reliable Communication are necessary
in non-forkable blockchains.

(6) From (1),(3) and (4): Forkable blockchains with a possible unbounded
number of forks are implementations of atomic storage.
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Mapping with existing solutions

References Refinement
Bitcoin R(BT -ADTEC ,ΘP)
Ethereum R(BT -ADTEC ,ΘP)
Algorand R(BT -ADTSC ,ΘF ,k=1)
ByzCoin R(BT -ADTSC ,ΘF ,k=1)
PeerCensus R(BT -ADTSC ,ΘF ,k=1)
Redbelly R(BT -ADTSC ,ΘF ,k=1)
Hyperledger R(BT -ADTSC ,ΘF ,k=1)
Tendermint R(BT -ADTSC ,ΘF ,k=1)
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Conclusions and Future Work
We presented a formal specification of blockchains using a modular approach.
Takeaways:

BitCoin and Ethereum are implementations of registers in a dynamic system
subject to malicious attacks, included the Sybil attack
To guarantee no-forks a Consensus oracle is needed: the generation of the block
as output of a Consensus instance solved inside a selected committee
[Amoussou et al OPODIS 2018]
Reliable communication in a dynamic system subject to Byzantine behavior is
required;

Future works
Continue to work on implementability of defined ADTs in a
message-passing dynamic system;
Fairness properties for oracles;
Formal definition of a blokchain execution model for smart contract
virtual machines, necessary to prove invariants w.r.t. the blockchain
consistency level provided.

c©CEA LIST 2019



The material of this presentation has been taken manly from:
Anceaume et al 2018. E. Anceaume, A. Del Pozzo, R. Ludinard, M. Potop-Butucaru, and S. Tucci-Piergiovanni.
Blockchain Abstract Data Type. In CoRR abs/1802.09877 and Poster at PPoPP 2019
Other references:
Chaum 1982. David Chaum. Blind Signatures for Untraceable Payments. In CRYPTO ’82: Proceedings of the 2nd
Conference on Advances in Cryptology. 199–203.
Law et al. 1996. Law, Sabett and Solinas. How to Make a Mint: The Cryptography of Anonymous Electronic
Cash. American University Law Review 46, 4, 1996, 1131–1162
Dai 1998. Wei Dai. 1998. B-Money. http://www.weidai.com/bmoney
Finney 2004. Hal Finney. 2004. RPOW. (2004). http://cryptome.org/rpow.htm
Szabo 2003. Nick Szabo. 2003. Advances in Distributed Security.
Szabo 2005. Nick Szabo. 2005. Bit Gold. http://unenumerated.blogspot.de/2005/12/bit-gold.html
Malkhi and Reiter 1998. Dahlia Malkhi and Michael Reiter. 1998. Byzantine quorum systems. Distributed
Computing 11, 4 (1998), 203–213.
Nakamoto 2008a. Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system.
Garay 2014. J. A. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone protocol: Analysis and applications.
In EUROCRYPT 2015.
Amoussou et al OPODIS 2018. Amoussou-Guenou, Del Pozzo, Potop-Butucaru, Tucci-Piergiovanni. Correctness
of Tendermint-core Blockchains. OPODIS 2018
Gilad et al 2017. Gilad, Hemo, Micali, Vlachos and Zeldovich: Algorand: Scaling Byzantine Agreements for
Cryptocurrencies. SOSP 2017
Luu et al 2016. L. Luu, D. Chu, H. Olickel, P. Saxena, and A. Hobor. 2016. Making Smart Contracts Smarter.
CCS 2016.
Herlihy 1991. M. Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst., 13(1):124–149, 1991.
Aguilera 2011. M. K. Aguilera, I. Keidar, D. Malkhi, and Al. Shraer. Dynamic atomic storage without consensus.
J. ACM 58, 2, Article 7 (April 2011)

c©CEA LIST 2019



Tokenomics

c©CEA LIST 2019
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