Long-Lived Counters with Polylogarithmic Amortized Step Complexity

Alessia Milani, LaBRI

Joint work with A. M. Baig, D. Hendler and C. Travers [DISC 2019]

Distributed computing

- Distributed computing : several computing entities (processes) cooperate to achieve a common goal.
- Cooperate requires processes to communicate.
- Shared objects provide a consistent interface for multiple processes to communicate.

Linearizable Shared Objects

- Object type: finite set of operations and a sequential specification to describe the correct behavior.
- Several (sequential) processes perform concurrent operations on the object.
- An object implementation usually provides the illusion that these operations are applied sequentially (one after the other)

- Linearizability [Herlihy and Wing, TOPLAS'90]

Counter Object Type

- Supports Increment and Read operations
- Sequential specification

□ An Increment increases the counter's value by 1 (initially 0)

□ A *Read* returns the number of previous *Increment* operations

SEQUENTIAL EXECUTION

Shared Counter object

Increment and Read operations are performed concurrently

A *Read* returns the number of *previous Increment* operations

CONCURRENT EXECUTION

Linearizable Counter

Every concurrent execution H is equivalent to a sequential execution S that respects

 $\hfill\square$ the sequential specification of the object, and

□ the real time order of operations in H

We study the complexity of

- Linearizable wait-free shared counter implementations
 - □ Wait-free : all high-level operations finish in a finite number of low-level operations for any interleaving
- □ in a standard shared-memory model

A Counter Implementation

- Provides the internal representation of the counter state
 - using other low-level shared objects
- And the algorithms which processes have to follow to perform (high-level) <u>Increment</u> and <u>Read</u> operations.

Model

n asynchronous deterministic processes, unique IDs, may fail-stop

Processes communicate using <u>read</u> and <u>write</u> operations on shared memory locations (called registers)

□ A write stores a new value in the register

A read returns the last value written

Implementation Complexity

The complexity of a high-level operation is the number of low-level operations (called steps) applied to perform it.

Counter Complexity Bounds

- O(n) steps counter Inoue et al., IDWA '94
- \Box Worst case complexity is in $\Omega(n)$ Jayanti, Tan and Toueg, PODC '96
- □ Worst case complexity can be polylogarithmic in short executions! Aspnes, Attiva and Censor-Hillel, JACM '12
 - □ Increment operations are O(min(logn logv,n))
 - □ Read operations are O(min(logv,n))
 - □ Where n is the number of processes and v is the counter's current value.
- \Box Amortized step complexity is in $\Omega(n)$ in all known algorithms (for executions of arbitrary length)

Our contribution

[Baig,Hendler, Milani,Travers-DISC 2019]

- We present a wait-free read/write counter algorithm with O(log² n) <u>amortized</u> step complexity
 - Amortized step complexity : worst case average number of accesses to low-level objects performed by high-level operations
- □ First wait-free counter with sub-linear amortized step complexity in executions of arbitrary length

Our Linearizable Wait-free Counter

- Builds on the techniques used by Aspnes et al. to obtain a counter with polylogarithmic worst case complexity in short executions.
- Is based on a novel unbounded wait-free max register with logarithmic amortized step-complexity (under an assumption specified soon)

Max-register Aspnes, Attiya and Censor-Hillel, JACM '12

A max register r differs from a register since a read operation returns the maximal value written into the register (and not the last)

Both WriteMax and ReadMax of value v take O(min(log v, n)) steps (n number of processes)

...

Increment: recursively increment from leaf to root

∑s_i

••.

Increment : O(min(logn logv,n)) Read : O(min(logv,n))

Talk Outline

Preliminaries

- The new algorithm
- Discussion

An observation: n-bounded increments

The value of any max register in the tree is never increased by more than *n*

A unbounded lock-free Max register

- An infinite array of m bounded max registers, max_j for all non-negative integers j
 - Each max register can store a value in [0,...,m-1]
 - Initially are all 0
- max_i is used to represents values in the range [mj,m(j+1) -1]
- An infinite number of 1-bit registers, switches_j for all nonnegative integers j
 - Initially are all 0

WriteMax(v) operation: Idea

- v=jm+v' where v'<m for some non-negative integer j
- WriteMax(v') in the low level max register max_i
- Set switch_{j-1} to 1 to make it obsolete (greater values have been written)

ReadMax operation : Idea

ReadMax() // by process i

Scan switches in increasing order to find a non-obsolete max_i

ReadMax operation : Idea

ReadMax() // by process i

Scan switches in increasing order to find a non-obsolete max_i

ReadMax operation : Idea

ReadMax() // by process i

Scan switches in increasing order to find a non-obsolete max_i

```
If found such max<sub>i</sub>
```

 $v' \rightarrow ReadMax(max_j)$ return j·m+v'

WriteMax(v) // by process i v' ← v mod m j ← [v/m]

WriteMax(v) // by process i $v' \leftarrow v \mod m$ $j \leftarrow \lfloor v/m \rfloor$ if switch_j=0

WriteMax(v) // by process i $v' \leftarrow v \mod m$ $j \leftarrow \lfloor v/m \rfloor$ $if switch_j=0$ $WriteMax(max_j,v')$


```
\begin{split} \textit{WriteMax(v) // by process i} \\ v' &\leftarrow v \bmod m \\ j &\leftarrow \lfloor v/m \rfloor \\ & \text{if switch}_{j} = 0 \\ & \textit{WriteMax}(\max_{j}, v') \\ & \text{if } (\textit{switch}_{j-1} = 0) \\ & \text{switch}_{j-1} \leftarrow 1 \\ & \text{last}_{i} \leftarrow \max(j, \text{last}_{i}) // \text{ used by ReadMax operations} \end{split}
```


last_i ← max(j,last_i) // used by ReadMax operations

Unbounded Max register amortized step complexity

- □ Each high-level WriteMax performs at most a single low-level max_i.WriteMax operation → O(logm) steps
- □ Each high-level ReadMax op performs at most a single low-level max_i.*ReadMax* operation →O(logm) steps
- By n-bounded increments assumption, and if m≥n² all reads of the switch of an obsolete max_j can be amortized against at least n max_j. WriteMax operations performed on it

the amortized step complexity is O(logn)

Counter amortized step complexity

Counter's amortized step complexity is O(log² n)

The wait-free algorithm : Idea

ReadMax() // by process i

Scan switches in increasing order to find a non-obsolete max_i

The wait-free algorithm : Idea

ReadMax() // by process i

Scan switches in increasing order to find a non-obsolete max_i

WriteMax() // by process j

Makes max_j obsolete before the ReadMax reads the corresponding switch.

The wait-free algorithm : Idea

ReadMax() // by process i

Scan switches in increasing order to find a non-obsolete max_i WriteMax() // by process j

- 1. Read max_j, compute the value for the ReadMax and store it into a register
- 2. Make max_i obsolete

The wait-free algorithm : helping mechanism

- A process i that makes a max-register obsolete, writes in the register H[i] the computed value of the max register and a sequence number
- Every O(n) steps, a ReadMax operation op reads all H[i]. It returns the value of a H[j] whose sequence number has been incremented at least twice during op.

Discussion

- □ We present the first wait-free read/write counter algorithm with sublinear amortized step complexity
 - Wait-free, amortized step complexity O(log² n)
- Logarithmic lower bound (Ω(logn)) on amortized step complexity of counters and other objects

Attiya and Hendler, TPDS '10

- □ Is this bound tight?
- □ Space complexity is infinite. Can it be bounded?

Thank you.

Questions?