Long-Lived Counters with
Polylogarithmic Amortized
Step Complexity

Alessia Milani, LaBRI

Joint work with A. M. Baig, D. Hendler and C. Travers
[DISC 2019]



Distributed computing

ADistributed computing : several computing
entities (processes) cooperate to achieve a
common goal.

JCooperate requires processes to
communicate.

AShared objects provide a consistent interface
for multiple processes to communicate.



Linearizable Shared Objects

J Object type: finite set of operations and a
sequential specification to describe the
correct behavior.

[ Several (sequential) processes perform
concurrent operations on the object.

J An object implementation usually provides
the illusion that these operations are applied
sequentially (one after the other)

— Linearizability [Herlihy and Wing, TOPLAS’90]



Counter Object Type

1 Supports Increment and Read operations

(1 Sequential specification
J An Increment increases the counter’s value by 1 (initially 0)

d A Read returns the number of previous Increment operations

SEQUENTIAL EXECUTION

Increment() Read()1 Increment() Read()2
Pl < > < > <€ > < >

Time




Shared Counter object

A /ncrement and Read operations are performed
concurrently

A Read returns the number of previous Increment operations

CONCURRENT EXECUTION
Incrementy()
Pl o >
Incrementy() Read()2
p2 < > < >
Read()?
p3 < >

Time



Linearizable Counter

Incrementy()
Pl € >
' | Increment() Read()2
p2 < > < »
Read()1
3
P < R

[ Every concurrent execution H is equivalent to a sequential

execution S that respects
1 the sequential specification of the object, and
O the real time order of operations in H



We study the complexity of

A Linearizable wait-free shared counter
implementations

dWait-free : all high-level operations finish in a finite
number of low-level operations for any interleaving

1 in a standard shared-memory model



A Counter Implementation

JProvides the internal representation of the
counter state

— using other low-level shared objects
JAnNd the algorithms which processes have to

follow to perform (high-level) Increment and
Read operations.

Low-level operation

pl = = = = -/ﬂ/

p2 ] =] High-level operation




Model

(n asynchronous deterministic processes, unique IDs,
may fail-stop

(J Processes communicate using read and write operations
on shared memory locations (called registers)

(J A write stores a new value in the register
A read returns the last value written

pl p2 pi pn
DRO RO G
write(v) ead()v

SHEEE J

Shared memory



Implementation Complexity

The complexity of a high-level operation is the
number of low-level operations (called steps)
applied to perform it.

Incrementy() Read() Low-level operations:
./ead,write
pl m = s = -
Read()

p2 = =] High-level operation

10



Counter Complexity Bounds

JO(n) steps counter Tnoue et al., IDWA '94
A Worst case complexity is in Q(n) Jayanti, Tan and Toueg, PODC '96

(d Worst case complexity can be polylogarithmic in short
executions! Aspnes, Attiya and Censor-Hillel, JACM '12
d Increment operations are O(min(logn logv,n))
(J Read operations are O(min(logv,n))

dWhere n is the number of processes and v is the counter’s
current value.

] Amortized step complexity is in Q(n) in all known
algorithms (for executions of arbitrary length)

[Can we do better? }Q’ :

8 i




Our contribution
[Baig,Hendler, Milani, Travers-DISC 2019]

J We present a wait-free read/write counter algorithm
with O(log? n) amortized step complexity

JAmortized step complexity : worst case average number of
accesses to low-level objects performed by high-level
operations

L First wait-free counter with sub-linear amortized
step complexity in executions of arbitrary length

12



Our Linearizable Wait-free
Counter

J Builds on the techniques used by Aspnes et al. to obtain a
counter with polylogarithmic worst case complexity in
short executions.

1 Is based on a novel unbounded wait-free max register
with logarithmic amortized step-complexity
(under an assumption specified soon)

13



Max-register

Aspnes, Attiya and Censor-Hillel, JACM 12

J A max register r differs from a register since a read operation
returns the maximal value written into the register (and not
the last)

WriteMax (v)

. >

Maximal value
previously

written

Max Register

O 0 ReadMax

r.Write(3) r.Write(1) r.Write(2) r.Read()3
—> € > € > —>

d Both WriteMax and ReadMax of value v take O(min(log v, n))
steps (n number of processes)




Max-register-based Counter

Aspnes, Attiya and Censor-Hillel, JACM 12

Increment: recursively

Zsi
increment from leaf to root -

15



Max-register-based Counter

Aspnes, Attiya and Censor-Hillel, JACM 12

Increment: recursively S
increment from leaf to root

P, increments

16



Max-register-based Counter

Aspnes, Attiya and Censor-Hillel, JACM 12

Increment: recursively S
increment from leaf to root

P, increments

17



Max-register-based Counter

Aspnes, Attiya and Censor-Hillel, JACM 12

increment from leaf to root

Increment: recursively Read: return value at root

P, increments p, does ReadMax

18



Max-register-based Counter

Aspnes, Attiya and Censor-Hillel, JACM 12

Increment: recursively Ss Read: return value at root
increment from leaf to root

P, increments p, does ReadMax

19



Max-register-based Counter

Aspnes, Attiya and Censor-Hillel, JACM 12
Increment: recursively

Read: return value at root
increment from leaf to root

P, increments o ) @ " | p, does ReadMax

20



Max-register-based Counter

Aspnes, Attiya and Censor-Hillel, JACM 12

increment from leaf to root

Increment: recursively Read: return value at root

P, increments p, does ReadMax

Increment : O(min(logn logv,n))

Read : O(min(logv,n))

21



Talk Outline

m Preliminaries

s The new algorithm

= Dijscussion

22



An observation:
n-bounded increments

The value of any max register in the tree
is never increased by more than n

|

23



A unbounded lock-free Max register

( max, max, max, max. \
m-bounded
max-registers 0 0 0 0
Switches 0 0 0 0
\_ J

* Aninfinite array of m bounded max registers, max; for all
non-negative integers j

— Each max register can store a value in [0O,...,m-
— Initially are all O

1]

* max;is used to represents values in the range [mj,m(j+1) -1]

* An |nf|n|te number of 1-bit registers, switches; for all non-

negative integers |

— Initially are all O

24



WriteMax(v) operation: Idea

4 max, max, max; )
m-bounded
max-registers

\_ Switches

J

* v=jm+v’ where v'<m for some non-negative integer j
* WriteMax(V’) in the low level max register max

* Set switch, ; to 1 to make it obsolete (greater values have
been written)

25



ReadMax operation : Idea

4 max, max, max,
m-bounded

max-registers
Switches

) I

REGdMGX() // by process i

Scan switches in increasing order to find a non-obsolete max.

26




ReadMax operation : Idea

4 max, max, max,
m-bounded
max-registers
Switches
) I
REGdMGX() // by process i

Scan switches in increasing order to find a non-obsolete max.

27




ReadMax operation : Idea

4 max, max, max max;
m-bounded
max-registers
Switches
NS J
REGdMGX() // by process i

Scan switches in increasing order toAfind a non-obsolete max.
If found such max;

V' =2 ReadMax(max;)
return jm+v’

28




WriteMax operation: scenario #1

( max, max, max; \
m-bounded
max-registers

\_ Switches y

WFitEMGX(V) // by process i
v' € vmod m

j € [v/m]

29



WriteMax operation: scenario #1

4 )

maxg max, max.
m-bounded
max-registers

Switches
- Y,

WFitEMGX(V) // by process i
v' € vmod m

j € [v/m]
if switchj=0

30



WriteMax operation: scenario #1

4 maxg max; max max;
m-bounded
max-registers
\ Switches 1 1 1 0
WFitEMGX(V) // by process i
v' & vmod m Old value: jm +v;
j < |v/m] New value: jm + max(v,v')

if switch,=0
WriteMax(max;V')

last, € max(j,last;) // used by ReadMax operations

31




WriteMax operation: scenario #1

4 maxg max; max max;
m-bounded
max-registers
\ Switches 1 1 1 0
WFitEMGX(V) // by process i
v' & vmod m Old value: jm +v;
j < |v/m] New value: jm + max(v,v')

if switch,=0
WriteMax(max;V')

last, € max(j,last;) // used by ReadMax operations

32




WriteMax operation: scenario #2

/ max, max, max; max;
m-bounded
max-registers
Switches 1 1 0 0
\_

WFitEMGX(V) // by process i
v' € vmod m
j € [v/m]
if switch,=0
WriteMax(max;,v')

33




WriteMax operation: scenario #2

/ max, max, . \
m-bounded
max-registers
Switches 1 1 0 0
\_

WFitEMGX(V) // by process i
v' € vmod m
j € [v/m]
if switch,=0
WriteMax(max;V')

34




WriteMax operation: scenario #2

4 )

maxg max, max.
m-bounded
max-registers

Switches
\_ J

WFitEMGX(V) // by process i

v' € vmodm
j € [v/m]
if switch,=0
WriteMax(max;,v')
if (switch, ;= 0)
switch; ;€1
last. € max(j,last;) // used by ReadMax operations

35



WriteMax operation: scenario #2

4 max, max, max, ; R
m-bounded
max-registers
\_ Switches )
WFitEMGX(V) // by process i
v' € vmod m Old value: (j-1)m+v,,
j € |v/m] New value: jm + max(vj,v')

if switch,=0
WriteMax(max;,v')
if (switch, ;= 0)
switch; ;€1
last. € max(j,last;) // used by ReadMax operations

36



WriteMax operation: scenario #3

maxg max; Max.,
m-bounded
max-registers
\_ Switches

WFitEMGX(V) // by process i
v' € vmod m
j € [v/m]
if switchj=0

Max register already obsolete,
no need to invoke MaxWrite

last, € max(j,last;) // used by ReadMax operations

37




Unbounded Max register amortized step
complexity
 Each high-level WriteMax performs at most a single low-level
max;. WriteMax operation =>» O(logm) steps

1 Each high-level ReadMax op performs at most a single low-level
max;.ReadMax operation =2 O(logm) steps

By n-bounded increments assumption, and if m>n?all reads of the
switch of an obsolete max; can be amortized against at least n
max;. WriteMax operations performed on it

$

the amortized step complexity is O(logn)

a )

max, max, max; , max;

m-bounded
max-registers Vo Vi Vi V;

_ Switches 1 1 1 0 )

38



Counter amortized step complexity

£

Counter's amortized step complexity is O(log? n)

39



The wait-free algorithm : Idea

/ maxg max, max. \
m-bounded
max-registers

\_ Switches )
1

REGdMGX() // by process i

Scan switches in

increasing order to find a
non-obsolete max;

40




The wait-free algorithm : Idea

4 max, max, max; A
m-bounded
max-registers
\_ Switches I Yy,
ReadMax() // by process i WriteMax() //by process
Scan switches in Makes max; obsolete
increasing order to find a before the ReadMax
non-obsolete max; reads the corresponding

switch.

41



The wait-free algorithm : Idea

4 max, max, max, ; N
m-bounded
max-registers
\_ Switches I )
ReadMax() // by process i WriteMax() //by process
Scan switches in 1. Read max;, compute the

increasing order to find a
non-obsolete max;

value for the ReadMax
and store it into a register
2. Make max; obsolete

42



The wait-free algorithm : helping
mechamsm

max, max, max,. )
m-bounded
max-registers
Switches
\_ J

[ HN Hﬂ Hﬂ H[n] ]
J A process i that makes a max-register obsolete, writes in the

register H[i] the computed value of the max register and a
sequence number

d Every O(n) steps, a ReadMax operation op reads all H[i]. It
returns the value of a H[j] whose sequence number has been
incremented at least twice during op.

43



Discussion

d We present the first wait-free read/write counter
algorithm with sublinear amortized step complexity

= Wait-free, amortized step complexity O(log? n)

d Logarithmic lower bound (Q(logn)) on amortized step

complexity of counters and other objects
Attiya and Hendler, TPDS 10

 Is this bound tight?
J Space complexity is infinite. Can it be bounded?



Thank you.

Questions?



