
Long-Lived	Counters	with	
Polylogarithmic	Amortized	
Step	Complexity	

Alessia	Milani,	LaBRI	
		

Joint	work	with	A.	M.	Baig,	D.	Hendler	and	C.	Travers	
[DISC	2019]	



q Distributed	computing	:	several	computing	
entities	(processes)	cooperate	to	achieve	a	
common	goal.	

q Cooperate	requires	processes	to	
communicate.	

q Shared	objects	provide	a	consistent	interface	
for	multiple	processes	to	communicate.	
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Distributed	computing	



q 	Object	type:	finite	set	of	operations	and	a	
sequential	specification	to	describe	the	
correct	behavior.	

q 	Several	(sequential)	processes	perform	
concurrent	operations	on	the	object.		

q 	An	object	implementation	usually	provides	
the	illusion	that	these	operations	are	applied	
sequentially	(one	after	the	other)	
– Linearizability	[Herlihy	and	Wing,	TOPLAS’90]	
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Linearizable	Shared	Objects		
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Counter	Object	Type	

q 	Supports	Increment	and	Read	operations		
q 	Sequential	specification	

q 	An	Increment	increases	the	counter’s	value	by	1	(initially	0)	
q 	A	Read	returns	the	number	of	previous	Increment	operations	
	
	

	 Increment()	 Increment()	 Read()2	

SEQUENTIAL	EXECUTION	

Read()1	

Time	

p1	
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Shared	Counter	object	

q Increment	and	Read	operations	are	performed	
concurrently	
q A	Read	returns	the	number	of	previous	Increment	operations	
	
	

	
Increment()	

Increment()	 Read()2	

Read()?	

p1	

p2	

p3	

Time	

CONCURRENT	EXECUTION	
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Linearizable	Counter		

Increment()	

Increment()	 Read()2	

Read()1	

p1	

p2	

p3	

q 	Every	concurrent	execution	H	is	equivalent	to	a	sequential	
execution	S	that	respects	

q 	the	sequential	specification	of	the	object,	and	
q 	the	real	time	order	of	operations	in	H	



q 	Linearizable	wait-free	shared	counter	
implementations	
q Wait-free	:	all	high-level	operations	finish	in	a	finite	
number	of	low-level	operations	for	any	interleaving	

q 	in	a	standard	shared-memory	model	
	

We	study	the	complexity	of	



q Provides	the	internal	representation	of	the	
counter	state		
– using	other	low-level	shared	objects	

q And	the	algorithms	which	processes	have	to	
follow	to	perform	(high-level)	Increment	and	
Read	operations.	
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A	Counter	Implementation		

High-level	operation	

Low-level	operation	

p1	

p2	
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Shared memory 

Model	
q n	asynchronous	deterministic	processes,	unique	IDs,		
may	fail-stop	

q Processes	communicate	using	read	and	write	operations	
on	shared	memory	locations	(called	registers)	
q 	A	write	stores	a	new	value	in	the	register	
q A	read	returns	the	last	value	written	

p1	

v	

write(v)	

p2	 pi	 pn	

…	 …	

read()v	



The	complexity	of	a	high-level	operation	is	the	
number	of	low-level	operations	(called	steps)	
applied	to	perform	it.		
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Implementation	Complexity		

High-level	operation	

Low-level	operations:	
read,write		
	p1	

p2	

Increment()	

Read()	

Read()	
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Counter	Complexity	Bounds	
q O(n)	steps	counter		
q Worst	case	complexity	is	in	Ω(n)	
q 	Worst	case	complexity	can	be	polylogarithmic	in	short	
executions!		
q 	Increment	operations	are	O(min(logn	logv,n))	
q 	Read	operations	are	O(min(logv,n))	
q Where	n	is	the	number	of	processes	and	v	is	the	counter’s	
current	value.	

q 	Amortized	step	complexity	is	in	Ω(n)	in	all	known	
algorithms	(for	executions	of	arbitrary	length)	
	

	

Inoue et al., IDWA '94	

Jayanti, Tan and Toueg, PODC ‘96 	

Aspnes, Attiya and Censor-Hillel, JACM ‘12 	

Can	we	do	better?	
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Our	contribution	 	 		
[Baig,Hendler, Milani,Travers-DISC 2019]	

q 	We	present	a	wait-free	read/write	counter	algorithm		
	with	O(log2	n)	amortized	step	complexity	
q Amortized	step	complexity	:	worst	case	average	number	of	
accesses	to	low-level	objects	performed	by	high-level	
operations	

q 	First	wait-free	counter	with	sub-linear	amortized		
	step	complexity	in	executions	of	arbitrary	length	
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Our	Linearizable	Wait-free	
Counter		

q 	Builds	on	the	techniques	used	by	Aspnes	et	al.	to	obtain	a	
counter	with	polylogarithmic	worst	case	complexity	in	
short	executions.	

q 	Is	based	on	a	novel	unbounded	wait-free	max	register		
	with	logarithmic	amortized	step-complexity		
	(under	an	assumption	specified	soon)	



Max-register	
Aspnes, Attiya and Censor-Hillel, JACM ‘12 	

Max	Register	

WriteMax(v) 

ReadMax 
v	

Maximal	value	
previously	
written	

q A	max	register	r	differs	from	a	register	since	a	read	operation	
returns	the	maximal	value	written	into	the	register	(and	not	
the	last)	

q Both	WriteMax	and	ReadMax	of	value	v	take	O(min(log	v,	n))	
steps	(n	number	of	processes)	

r.Write(3)	 r.Write(1)	 r.Write(2)	 r.Read()3	



Max-register-based	Counter	

15	

Aspnes, Attiya and Censor-Hillel, JACM ‘12 	

s1 s2 s3 sn s4 … 

s1+s2 s3+s4 

s1+...+s4 

∑si 

sn-1+sn 

Increment:	recursively		
increment	from	leaf	to	root	

… 

p1	 p2	 p3	 p4	 pn	



Max-register-based	Counter	
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Aspnes, Attiya and Censor-Hillel, JACM ‘12 	

s1 s2 s3 sn s4 … 

s1+s2 s3+s4 

s1+...+s4 

∑si 

sn-1+sn 

Increment:	recursively		
increment	from	leaf	to	root	

+1 p1 increments 

… 

p1	 p2	 p3	 p4	 pn	



Max-register-based	Counter	
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Aspnes, Attiya and Censor-Hillel, JACM ‘12 	

s1 s2 s3 sn s4 … 

s1+s2 s3+s4 

s1+...+s4 

∑si 

sn-1+sn 

Increment:	recursively		
increment	from	leaf	to	root	

+1 

p1 increments 

… 

p1	 p2	 p3	 p4	 pn	



Max-register-based	Counter	
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Aspnes, Attiya and Censor-Hillel, JACM ‘12 	

s1 s2 s3 sn s4 … 

s1+s2 s3+s4 

s1+...+s4 

∑si 

sn-1+sn 

Read:	return	value	at	root	Increment:	recursively		
increment	from	leaf	to	root	

+1 p1 increments 

WriteMax 

pk does ReadMax  

… 

p1	 p2	 p3	 p4	 pn	



Max-register-based	Counter	
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Aspnes, Attiya and Censor-Hillel, JACM ‘12 	

s1 s2 s3 sn s4 … 

s1+s2 s3+s4 

s1+...+s4 

∑si 

sn-1+sn 

Read:	return	value	at	root	Increment:	recursively		
increment	from	leaf	to	root	

+1 p1 increments 

WriteMax 

pk does ReadMax  

… 

p1	 p2	 p3	 p4	 pn	



Max-register-based	Counter	
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Aspnes, Attiya and Censor-Hillel, JACM ‘12 	

s1 s2 s3 sn s4 … 

s1+s2 s3+s4 

s1+...+s4 

∑si 

sn-1+sn 

Read:	return	value	at	root	Increment:	recursively		
increment	from	leaf	to	root	

+1 p1 increments WriteMax pk does ReadMax  

… 

p1	 p2	 p3	 p4	 pn	



Max-register-based	Counter	
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Aspnes, Attiya and Censor-Hillel, JACM ‘12 	

s1 s2 s3 sn s4 … 

s1+s2 s3+s4 

s1+...+s4 

∑si 

sn-1+sn 

Read:	return	value	at	root	Increment:	recursively		
increment	from	leaf	to	root	
p1 increments pk does ReadMax  

… 

Increment	:	O(min(logn	logv,n))	
Read	:	O(min(logv,n))	



n  Preliminaries	
n  The	new	algorithm	
§  Discussion	

Talk	Outline	

22	



An	observation:		
n-bounded	increments	
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The	value	of	any	max	register	in	the	tree	
is	never	increased	by	more	than	n		



Switches	
	

0	 0	 0	 0	

•  An	infinite	array	of	m	bounded	max	registers,	maxj	for	all	
non-negative	integers	j	
–  Each	max	register	can	store	a	value	in	[0,…,m-1]	
–  Initially	are	all	0	

•  maxj	is	used	to	represents	values	in	the	range	[mj,m(j+1)	-1]	
•  An	infinite	number	of	1-bit	registers,	switchesj	for	all	non-

negative	integers	j	
–  Initially	are	all	0	
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max0 
	

max1 
	

maxj-1 
	

maxj 
	

0	 0	 0	 0	

A	unbounded	lock-free	Max	register	

m-bounded		
max-registers	

	



WriteMax(v)	operation:	Idea	
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•  v=jm+v’			where	v’<m		for	some	non-negative	integer	j	
•  WriteMax(v’)	in	the	low	level	max	register	maxj	
•  Set	switchj-1	to	1	to	make	it	obsolete	(greater	values	have	
been	written)	

	
		
		

Switches	
	

1	 1	 1	 0	

max0 
	

max1 
	

maxj-1 
	

maxj 
	

v0	 v1	 vj-1	 vj	
m-bounded		
max-registers	

	



ReadMax()	
Scan	switches	in	increasing	order	to	find	a	non-obsolete	maxj	
	

	 		
				
		

ReadMax	operation	:	Idea	
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Switches	
	

1	 1	 1	 0	

max0 
	

max1 
	

maxj-1 
	

maxj 
	

v0	 v1	 vj-1	 vj	

//	by	process	i				
		

m-bounded		
max-registers	

	



ReadMax()	
Scan	switches	in	increasing	order	to	find	a	non-obsolete	maxj	
	

	 		
				
		

ReadMax	operation	:	Idea	
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Switches	
	

1	 1	 1	 0	

max0 
	

max1 
	

maxj-1 
	

maxj 
	

v0	 v1	 vj-1	 vj	

//	by	process	i				
		

m-bounded		
max-registers	

	



ReadMax()	
Scan	switches	in	increasing	order	to	find	a	non-obsolete	maxj	
	

	 		
				
		

ReadMax	operation	:	Idea	
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Switches	
	

1	 1	 1	 0	

max0 
	

max1 
	

maxj-1 
	

maxj 
	

v0	 v1	 vj-1	 vj	

If	found	such	maxj	

//	by	process	i		
		
		
	 	v’	à	ReadMax(maxj)	
	 	return	j.m+v’	 	 		
				
		

m-bounded		
max-registers	

	



WriteMax	operation:	scenario	#1	
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WriteMax(v)	
	v'	ß	v	mod	m	
	j	ß	⎣v/m⎦	
		

Switches	
	

1	 1	 1	 0	

max0 
	

max1 
	

maxj-1 
	

maxj 
	

v0	 v1	 vj-1	 vj	

//	by	process	i	

m-bounded		
max-registers	

	



WriteMax	operation:	scenario	#1	
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WriteMax(v)	
	v'	ß	v	mod	m	
	j	ß	⎣v/m⎦	
	if	switchj=0	
		

m-bounded		
max-registers	

	

Switches	
	

1	 1	 1	 0	

max0 
	

max1 
	

maxj-1 
	

maxj 
	

v0	 v1	 vj-1	 vj	

//	by	process	i	



WriteMax	operation:	scenario	#1	
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WriteMax(v)	
	v'	ß	v	mod	m	
	j	ß	⎣v/m⎦	
	if	switchj=0	
	 	WriteMax(maxj,v')	
	lasti	ß	max(j,lasti)	//	used	by	ReadMax	operations	

Switches	
	

1	 1	 1	 0	

max0 
	

max1 
	

maxj-1 
	

maxj 
	

v0	 v1	 vj-1	 vj	

Old	value:			j.m	+	vj	

//	by	process	i	

New	value:	j.m	+	max(vj,v')	

m-bounded		
max-registers	

	



WriteMax	operation:	scenario	#1	
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Switches	
	

1	 1	 1	 0	

max0 
	

max1 
	

maxj-1 
	

maxj 
	

v0	 v1	 vj-1	 v'	

Old	value:			j.m	+	vj	
New	value:	j.m	+	max(vj,v')	

//	by	process	i	WriteMax(v)	
	v'	ß	v	mod	m	
	j	ß	⎣v/m⎦	
	if	switchj=0	
	 	WriteMax(maxj,v')	
	lasti	ß	max(j,lasti)	//	used	by	ReadMax	operations	

	
	

		

m-bounded		
max-registers	

	



WriteMax	operation:	scenario	#2	
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WriteMax(v)	
	v'	ß	v	mod	m	
	j	ß	⎣v/m⎦	
	if	switchj=0	
	 	WriteMax(maxj,v')	
		

Switches	
	

1	 1	 0	 0	

max0 
	

max1 
	

maxj-1 
	

maxj 
	

v0	 v1	 vj-1	 vj	

//	by	process	i	

m-bounded		
max-registers	

	



WriteMax	operation:	scenario	#2	
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WriteMax(v)	
	v'	ß	v	mod	m	
	j	ß	⎣v/m⎦	
	if	switchj=0	
	 	WriteMax(maxj,v')	
		

Switches	
	

1	 1	 0	 0	

max0 
	

max1 
	

maxj-1 
	

maxj 
	

v0	 v1	 vj-1	 v'	

//	by	process	i	

m-bounded		
max-registers	

	



WriteMax	operation:	scenario	#2	
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Switches	
	

1	 1	 0	 0	

max0 
	

max1 
	

maxj-1 
	

maxj 
	

v0	 v1	 vj-1	 v'	

//	by	process	i	WriteMax(v)	
	v'	ß	v	mod	m	
	j	ß	⎣v/m⎦	
	if	switchj=0	
	 	WriteMax(maxj,v')	
	 	if	(switchj-1=	0)		
	 	 	switchj-1ß1	
		lasti	ß	max(j,lasti)	//	used	by	ReadMax	operations			

m-bounded		
max-registers	

	



WriteMax	operation:	scenario	#2	
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Switches	
	

1	 1	 1	 0	

max0 
	

max1 
	

maxj-1 
	

maxj 
	

v0	 v1	 vj-1	 v'	

//	by	process	i	

Old	value:			(j-1).m	+	vj-1	
New	value:	j.m	+	max(vj,v')	

WriteMax(v)	
	v'	ß	v	mod	m	
	j	ß	⎣v/m⎦	
	if	switchj=0	
	 	WriteMax(maxj,v')	
	 	if	(switchj-1=	0)		
	 	 	switchj-1ß1	
		lasti	ß	max(j,lasti)	//	used	by	ReadMax	operations			
		

m-bounded		
max-registers	

	



WriteMax	operation:	scenario	#3	
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WriteMax(v)	
	v'	ß	v	mod	m	
	j	ß	⎣v/m⎦	
	if	switchj=0	
	 	…	
	lasti	ß	max(j,lasti)	//	used	by	ReadMax	operations	
	 		
				
		

Switches	
	

1	 1	 1	 0	

max0 
	

max1 
	

maxj 
	

Maxj+1 
	

v0	 v1	 vj-1	 v'	

Max	register	already	obsolete,	
no	need	to	invoke	MaxWrite	
	
	

//	by	process	i	

m-bounded		
max-registers	
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Unbounded	Max	register	amortized	step	
complexity	

q Each	high-level	WriteMax	performs	at	most	a	single	low-level	
maxj.WriteMax	operation	è	O(logm)	steps			

q Each	high-level	ReadMax	op	performs	at	most	a	single	low-level	
maxj.ReadMax	operation	èO(logm)	steps	

q By	n-bounded	increments	assumption,	and	if	m≥n2	all	reads	of	the	
switch	of	an	obsolete	maxj	can	be	amortized	against	at	least	n	
maxj.WriteMax	operations	performed	on	it	

the	amortized	step	complexity	is	O(logn)	

Switches	
	

1	 1	 1	 0	

max0 
	

max1 
	

maxj-1 
	

maxj 
	

v0	 v1	 vj-1	 vj	
m-bounded		
max-registers	
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Counter	amortized	step	complexity	

Counter's	amortized	step	complexity	is	O(log2	n)	



ReadMax()	
Scan	switches	in	
increasing	order	to	find	a	
non-obsolete	maxj	
	

	 		
				
		
		

The	wait-free	algorithm	:	Idea	
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Switches	
	

1	 1	 1	 0	

max0 
	

max1 
	

maxj-1 
	

maxj 
	

v0	 v1	 vj-1	 vj	

//	by	process	i	

m-bounded		
max-registers	

	



ReadMax()	
Scan	switches	in	
increasing	order	to	find	a	
non-obsolete	maxj	
	

	 		
				
		
		

The	wait-free	algorithm	:	Idea	
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Switches	
	

1	 1	 1	 0	

max0 
	

max1 
	

maxj-1 
	

maxj 
	

v0	 v1	 vj-1	 vj	

//	by	process	i	

m-bounded		
max-registers	

	

WriteMax()	
Makes	maxj	obsolete	
before	the	ReadMax	
reads	the	corresponding	
switch.	
	

//	by	process	j	

1	



ReadMax()	
Scan	switches	in	
increasing	order	to	find	a	
non-obsolete	maxj	
	

	 		
				
		
		

The	wait-free	algorithm	:	Idea	
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Switches	
	

1	 1	 1	 0	

max0 
	

max1 
	

maxj-1 
	

maxj 
	

v0	 v1	 vj-1	 vj	

//	by	process	i	

m-bounded		
max-registers	

	

WriteMax()	
Makes	maxj	obsolete	
before	the	ReadMax	
reads	the	corresponding	
switch.	
	

//	by	process	j	

1.  Read	maxj,	compute	the	
value	for	the	ReadMax	
and	store	it	into	a	register		

2.  Make	maxj	obsolete	



The	wait-free	algorithm	:	helping	
mechanism		

q A	process	i	that	makes	a	max-register	obsolete,	writes	in	the	
register	H[i]	the	computed	value	of	the	max	register	and	a	
sequence	number	

q  	Every	O(n)	steps,	a	ReadMax	operation	op	reads	all	H[i].	It	
returns	the	value	of	a	H[j]	whose	sequence	number	has	been	
incremented	at	least	twice	during	op.	

	

	
	

Switches	
	

0	 0	 0	 0	

max0 
	

max1 
	

maxj-1 
	

maxj 
	

0	 0	 0	 0	

H[1]	 H[2]	 H[3]	 H[n]	

43	

m-bounded		
max-registers	

	

0,0	 0,0	 0,0	 0,0	



Discussion	

q 	We	present	the	first	wait-free	read/write	counter		
	algorithm	with	sublinear	amortized	step	complexity	
§  	Wait-free,	amortized	step	complexity	O(log2	n)	

q Logarithmic	lower	bound	(Ω(logn))	on	amortized	step	
complexity	of	counters	and	other	objects	
	

q 	Is	this	bound	tight?	
q 	Space	complexity	is	infinite.	Can	it	be	bounded?	
	
	

	
	
	

Attiya and Hendler, TPDS ‘10 	



Thank	you.	
	

Questions?	


